D-MOD2000
A Computer Program for Seismic Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams and Solid Waste Landfills

Quick Tutorial

Neven Matasović
Gustavo A. Ordóñez
D-MOD2000

A Computer Program for Seismic Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams and Solid Waste Landfills

By

Neven Matasović, Ph.D.
Gustavo A. Ordóñez
GeoMotions, LLC

Copyright © 2007-2013 GeoMotions, LLC

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without the prior written permission of GeoMotions, LLC.

www.geomotions.com
Terms and Conditions for Licensing the Software
YOU SHOULD READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE USING THE SOFTWARE. INSTALLATION OF THE SOFTWARE INTO YOUR COMPUTER INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD RETURN THE PACKAGE PROMPTLY AND YOUR MONEY WILL BE REFUNDED. These programs are provided by the authors. Title to the media on which the software is recorded and to the documentation in support thereof is transferred to the customer, but title to the software is retained by the authors. GeoMotions, LLC owns all intellectual property in the programs. GeoMotions, LLC permits you to use the programs only in accordance with the terms of this agreement. You assume responsibility for the selection of the software to achieve your intended results and for the installation of the software, the use of and the results obtained from the software.

License

- You may use the software on only one machine at any one time.
- You may copy the software for back up only in support of such use.
- You may not use, copy, modify, or transfer the software, or any copy, in whole or part, except as expressly provided in this document.
- You may not sell, sub-license, rent, or lease this software.
- You may not reverse engineer, decompile or disassemble the programs to obtain the source code.
- Although the software was tested, you are solely responsible for using and interpreting the results obtained from execution of the software.
- When first using the software, you should compare the results from the software with manual calculations and/or results from other computer software to verify the reliability of the program.
- The software is not a teaching tool for one-dimensional seismic site response analysis.
- The authors do not guarantee nor imply the accuracy or reliability of this software or related documentation. As such, they cannot be held responsible for incorrect results or damages resulting from the use of this software. It is the responsibility of the user to determine the usefulness and technical accuracy of this software in his/her own environment.
- This software was not developed as a network application. Thus, it should not be installed on a Network Server.
- Installation of the software onto your computer indicates your acceptance of the terms and conditions in this agreement.

Terms

The license is effective until terminated. You may terminate it any time by destroying the software together with any back-up copies. It will also terminate if you fail to comply with any term or condition of this agreement. You agree upon such termination to destroy the software together with any back-up copies, modifications, and/or merged portions in any form.

Warranty

The authors will correct any errors in the code at no charge after the purchase date of the software. Notification of a suspected error must be made in writing, with a complete listing of the input and output files and description of the error. If, in the judgment of the authors, the code does contain an error, the authors will (at their option) correct or replace the copy at no cost to the user or refund the initial purchase price of the software. These warranties are exclusive and in lieu of all other warranties, whether expressed or implied, including the implied warranties of merchantability, fitness for a particular purpose and non-infringement. No oral or written information or advice given by the authors, distributors, dealers or agents shall increase the scope of the above warranties or create any new warranties. Some states do not allow the exclusion of implied warranties, so the above exclusion may not apply to you. In that event, any implied warranties are limited in duration to ninety (90) days from the date of delivery of the software. This warranty gives you specific legal rights. You may have rights, which vary from state to state.

Limitation of Liability

The software is a complex program which requires engineering expertise to use correctly. The authors assume absolutely no responsibility for the correct use of this software. All results obtained should be carefully examined by an experienced professional engineer to determine if they are reasonable and accurate. Although the authors
have endeavored to make the software error free, the program is not and cannot be certified as infallible. Therefore, the authors make no warranty, either implicit or explicit, as to the correct performance or accuracy of this software. In no event shall the authors be liable to anyone for special, collateral, incidental, or consequential damage in connection with or arising out of purchase or use of this software. The sole and exclusive liability to the authors, regardless of the form of action, shall not exceed the purchase price of this software.

USB Hardware Key
Title to the USB Hardware Key(s) associated with a license belongs to GeoMotions, LLC. You are wholly responsible for maintaining and safeguarding the USB Hardware Key. We reserve the right to determine the cost of replacing a lost or stolen USB Hardware Key, up to and including the cost of a new license.

Support
The authors will provide telephone or electronic mail support, at no charge, to assist the licensee in the installation of the software on his or her computer system. Additionally, general assistance may be provided in aiding the licensee in understanding the capabilities of the various features of the software. However, no-cost assistance is not provided for help in applying the software to specific user-defined problems. We reserve the right to determine what qualifies as no-cost assistance, and what requires payment. In all instances, the user is encouraged to send the problem description and/or data files to the authors by electronic mail in order to minimize the amount of time spent trying to define the problem and/or to provide help with a problem.

Copyright Notice
The software and accompanying manual are copyrighted with all rights reserved by the authors, respectively. Under United States Copyright Laws, the software and its accompanying documentation may not be copied, in whole or in part, except to make a backup copy for archival purpose only. Any other copying, selling or otherwise distributing this software is hereby expressly forbidden. All products and brand names are trademarks and/or registered trademarks of their respective holders.

Export Law Assurances
You agree that the software will not be shipped, transferred or exported directly, into any country prohibited by the United States Export Administration Act and the regulations there under nor will be used for any purpose prohibited by the Act.

If you do not agree to these terms and conditions, please return the full product with proof of purchase within 30 days for a full refund, minus shipping and handling costs.
D-MOD2000

Quick Tutorial
D-MOD2000 Quick Tutorial

by:

Gustavo A. Ordonez
GeoMotions, LLC
Lacey, Washington
USA

October 2011

Copyright © 2011 GeoMotions, LLC
Double-click on the D-MOD2000 icon to execute D-MOD2000
Help on each form is obtained by clicking on the “Help” command button.
Nonlinear Earthquake Response Analysis

This is the Main Menu form for D-MOD2000. It has three main uses: 1) to create the input file for D-MOD_2, 2) to process the master and auxiliary output files created by D-MOD_2, and 3) to allow the user access to plotting and other engineering analyses features of the program.

In this section, we will first explain the main working file in D-MOD2000. This file is identified by the extension *.EDT. This file is a database file that stores the data for the different options for D-MOD_2. You can have any number of sets of data for each option, i.e., 8 sets of option 1 data, 6 sets of option 2, etc. D-MOD2000 creates this database file for all the files that are created and used in D-MOD2000. However, once

Copyright © 2011 GeoMotions, LLC
Command button to create a new option

Command buttons to open, save or to edit an existing database file
Command buttons to create input file and edit the list of options

Command buttons to execute D-MOD_2 and to process the output files
Text box to enter name of Master Output File

Text box to enter the label used to name the files generated from processing of the Master Output File

Text box to enter the number of the layer for which output will be generated by the program
Options to create, view and print input data

Plotting options
Option for other analysis and utilities
Options to automatically save data, check data before conducting the analysis, and to switch between SI and English units.
Window where list of options in the database file is shown

Window where list of options to be included in the input file is shown
EDT and Input Data Files

- An EDT file is a database file that stores the data for the different D-MOD_2 options. These options are used by D-MOD2000 to create an input file.
- A maximum of 32,000 options can be saved in the EDT file.
- The options are saved sequentially.
- Listing of the options used in the input file are saved in the EDT file.
- The input file stores the different options that will be executed by D-MOD_2.
- The EDT file is not an input file for D-MOD_2.
D-MOD2000 EDT & Input Files

EDT Options

Option 1 - Master Control Card - Wildlife Site - D-MOD2000 Tutorial
Option 2 - Wildlife Site - Analytical Soil Profile
Option 4 - Wildlife Site - Material Properties - Case SH-A
Option 4 - Wildlife Site - Material Properties - Case SH-B
Option 4 - Wildlife Site - Material Properties - Case SH-C
Option 5 - Visco-Elastic Half-Space Properties
Option 6 - Wildlife Site - D-MOD2000 Tutorial - Dynamic Analysis Solution
Option 7 - Input Motion: Wildlife Liquefaction Array, 7.5 M Downhole

Input File Options

Option 1 - Master Control Card - Wildlife Site - D-MOD2000 Tutorial
Option 2 - Wildlife Site - Analytical Soil Profile
Option 4 - Wildlife Site - Material Properties - Case SH-B
Option 6 - Wildlife Site - D-MOD2000 Tutorial - Dynamic Analysis Solution
Option 7 - Input Motion: Wildlife Liquefaction Array, 7.5 M Downhole
Output Files

- D-MOD creates a master output file and a series of auxiliary output files for a specific layer.

- The master output file echoes the input information, provides information on the initial stress state in the profile, lists the peak values of time-dependent variables (for all layers in the profile), and defines contents (file names, variables and units) of the auxiliary output files.

- The auxiliary output files contain time-dependent variables calculated for a specific layer in the profile.

- A summary of the master output file, which includes the input data and the table of maximum values is saved to a file.
Output Files

- When processing the master output file, a series of files are created to save the data used by other options of D-MOD2000:

 - *ACC* Acceleration time histories
 - *DPL* Displacement time histories
 - *MAX* Maximum values
 - *NTS* Normalized shear stress time histories
 - *PWP* Pore water pressure ratio time histories
 - *STN* Strain time histories
 - *STS* Stress time histories
 - *VEL* Velocity time histories
 - *A#L#.VAR* Time dependent variables for a specific layer

- Files are text files
The first step in our analysis is to estimate viscous damping by calibrating the D-MOD analysis against an equivalent-linear, i.e. SHAKE, analysis that has a constant value of viscous damping at all frequencies. There are two approaches that can be used to evaluate the Rayleigh Damping coefficients, n and \(\xi \), using an iterative procedure based on comparing how well the SHAKE and D-MOD surface response spectra and peak acceleration & shear strain vs. depth compare to each other:

1. Develop a SHAKE column and perform an equivalent-linear SHAKE analysis to obtain the acceleration time history at the surface level. Limit PGA to \(\leq 0.4 \) g and Shear Strain to \(< 0.5\% \).

2. Develop a SHAKE column and perform a small strain, linear SHAKE analysis to obtain the acceleration time history at the surface level. Use \(G_{\text{max}} \) and 5% damping for all layers (i.e., use “zero” type soils in Option 2). More detailed information about this approach is provided by Stewart et al. (2008).
The first approach involves evaluation of the Rayleigh Damping coefficients, n and ξ, using an iterative procedure as follows:

1. Develop a SHAKE column and perform the SHAKE analysis to obtain the response spectrum at the surface level. Limit PGA to ≤ 0.4 g and Shear Strain to $< 0.5\%$.
2. Develop the D-MOD column to match the SHAKE column as close as possible and use $n = 0$ and $\xi = 0.5$ for first iteration.
3. Perform a total-stress nonlinear analysis with D-MOD.
4. Compare the surface response spectrum from SHAKE to the response spectrum from D-MOD.
5. Adjust n and ξ and repeat from step 3 until a “satisfactory” match between the SHAKE and D-MOD spectra is obtained. Also, compare the shear strain vs. depth plot from both SHAKE and D-MOD.
Create *.EDT Database File Options

1. Click on “Import SHAKE2000 Input” to select it.

2. Click on “Ok”.

Copyright © 2011 GeoMotions, LLC
Import Data from SHAKE2000 Input File

1. Switch folders until you change to "GeoMotions\ ShortCourse\ D-MOD" folder

2. Click on "SHAKEShortCourse.in" to select it

3. Click on "Open"
Create *.EDT Database File Options

1. Click on "Yes"
Sample Problem

SHAKE Column

D-MOD Column

\[f_{\text{max}} = 25 \text{ Hz} \Rightarrow h < \sqrt{v/100} \]
Create *.EDT Database File Options

1. Click on "Save"
Create *.EDT Database File Options

1. Switch folders until you change to "GeoMotions\ ShortCourse\ D-MOD" folder

2. Enter "ShortCourse.edt" in File name

3. Click on "Save"
Create *.EDT Database File Options

| Option 1 - Total Stress/Nonlinear 13 Layers & 13 Materials |
| Option 2 - Soil Profile No. 1: Column 1 - Short Course |
| Option 3 - Soil Profile No. 2: Column 2 - Long Course |

1. Click on "Option 2 - Soil Profile No. 1: Column 1 - Short Course" to select it

2. Click on "Edit"
Create *.EDT Database File Options
Option 2 – Soil Profile – Check Settings

Above GWT = 1
Below GWT = 0

Layer No. 5, top saturated layer

PWP = 1 ⇒ Sand
PWP = 2 ⇒ Clay
Create *.EDT Database File Options
Option 2 – Soil Profile

1. Enter “1” for layers 2 through 4
2. Scroll down to show bottom layers
Create *EDT Database File Options
Option 2 – Soil Profile

1. Click on “Ok”

Layer 13, bottom saturated soil layer
Create *.EDT Database File Options

1. Click on "Option 1 - Total Stress\Nonlinear..." to select it

2. Click on "Edit"
Create *.EDT Database File Options
Option 1 – Master Control Card – Total Stress Analysis

1. Enter “5” for Number of the top saturated layer
2. Click on “Ok”

- Total Stress Analysis
- Half-space is visco-elastic ⇒ outcrop motion
- Nonlinear Analysis
Create *.EDT Database File Options

1. Click on “Option 4 - Material Properties: Dynamic Soil Properties Set No. 1” to select it

2. Click on “Edit”
Create *.EDT Database File Options
Option 4 – Material Properties: MKZ Model

\[
\tau^* = f'(\gamma) = \frac{\delta_G G_{mo} \gamma}{1 + \beta \left(\frac{\delta_G G_{mo} \gamma}{\tau_{mo}}\right)^s}
\]

\[
G_{mo} = \frac{G_{mo}}{\sigma_{vc}}
\]

\[
\tau_{mo} = \frac{\tau_{mo}}{\sigma_{vc}}
\]

\[
\delta_{\tau} = 1 - \left(\mu^*\right) \quad \delta_G = \sqrt{1 - \mu^*}
\]

<table>
<thead>
<tr>
<th>Set No.</th>
<th>Material Description - Set Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material Properties: Dynamic Soil Properties Set No. 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Materials</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No. 1 - 5 and Upper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(G_{mo}) (psf)</th>
<th>(\tau_{mo}) (psf)</th>
<th>(\beta)</th>
<th>(s)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1274569</td>
<td>412.9604</td>
<td>1.1</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\gamma_s) (ft/sec)</th>
<th>(b_{l}) (psf)</th>
<th>(K_2)</th>
<th>(m)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>572.76</td>
<td></td>
<td>0.0025</td>
<td>0.43</td>
<td>0.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\gamma_{sat}) (pcf)</th>
<th>(\gamma_{wet}) (pcf)</th>
<th>(k) (ft/sec)</th>
<th>(\alpha_R) or (c)</th>
<th>(\beta_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>120</td>
<td>0.0066</td>
<td>0.000000E00</td>
<td>6.80138E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f)</th>
<th>(P)</th>
<th>(t)</th>
<th>(\gamma_{fV}) (%)</th>
<th>OCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.04</td>
<td>2.6</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>
Create *.EDT Database File Options

Differential equations of the simultaneous generation, dissipation and redistribution of PWP within a deposit

\[\frac{\partial u}{\partial t} = \frac{E_r}{\gamma_w} \frac{k}{\gamma_w} \left(\frac{\partial^2 u}{\partial z^2} \right)_{st} + \left(\frac{\partial u}{\partial r} \right)_{cy} \]

\[E_r = \frac{(\sigma'_v)^{1-m}}{m K_2 \left(\sigma'_{vo} \right)^{n-m}} \]
(Martinet et al., 1975)
Create *.EDT Database File Options
Pore Water Pressure Model for Sand

\[\mu_N = \frac{p f F N (\gamma_c - \gamma_{\text{wp}})}{1 + p f F N (\gamma_c - \gamma_{\text{wp}})} \]

(Dobry et al., 1985)
Create *.EDT Database File Options
Cyclic Degradation & Pore Water Pressure Model for Clay

1. Click on down arrow and select “No. 8 - Clay PI = 35”

2. Click on “MKZ”

\[\mu_N^* = AN^{-3s(\gamma_c - \gamma,np)} + BN^{-2s(\gamma_c - \gamma,np)} + CN^{-s(\gamma_c - \gamma,np)} + D \]

Copyright © 2011 GeoMotions, LLC
Create *.EDT Database File Options

Option 4 – Material Properties: MKZ Model & Viscous Damping

\[
\tau^* = f''(\gamma) = \frac{\delta G G^{*}_{mo} \gamma}{1 + \beta \left(\frac{\delta G G^{*}_{mo}}{\delta \tau \tau^{*}_{mo}} \right)^n}
\]

\[
G^{*}_{mo} = \frac{G_{mo}}{\sigma_{vc}} \quad \tau^{*}_{mo} = \frac{\tau_{mo}}{\sigma_{vc}}
\]

\[
c = \alpha_R m x \beta_R k
\]

\[
\alpha_R = \frac{\varepsilon_{sir}}{T} \left(\frac{n}{n+1} \right)
\]

\[
\beta_R = \frac{\varepsilon_{sir} T}{\pi (1+n)}
\]
Create *.EDT Database File Options

Option 4 – Material Properties

1. Click on up/down arrows for β
2. Click on up/down arrows for s
3. Click on “Update β & s for material type”
4. Click on “Ok”

1st iteration use default values for n and ξ
Create *.EDT Database File Options
Option 4 – Material Properties

1. Click on “graph” icon
Create *.EDT Database File Options
Option 4 - Material Properties

1. Click on down arrow, scroll down and select "Generic Clay (Pl=30)"

2. Click on “Update all similar materials”

3. Click on “Choose”
Create *.EDT Database File Options
Option 4 – Material Properties

1. Click on down arrow and select “No. 5 - EPRI 21-50”

2. Click on “Sand”

<table>
<thead>
<tr>
<th>Set No.:</th>
<th>Material Description - Set Identification:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material Properties: Dynamic Soil Properties Set No. 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Materials</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No. 5 - EPRI 21-50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G_m (psf)</th>
<th>γ_m (psf)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1336447</td>
<td>433.0089</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V_s (ft/sec)</th>
<th>E_I (psf)</th>
<th>K_2</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>655.73</td>
<td>0.0025</td>
<td>0.43</td>
<td>0.62</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γ_{sat} (pcf)</th>
<th>γ_{wet} (pcf)</th>
<th>k (ft/sec)</th>
<th>α_R or c</th>
<th>β_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>95</td>
<td>0.0066</td>
<td>0.0000000000</td>
<td>8.79592E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
<th>P</th>
<th>F</th>
<th>s</th>
<th>γ_{tv} (%)</th>
<th>OCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.04</td>
<td>2.6</td>
<td>1.7</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_t</th>
<th>t</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>
Create *.EDT Database File Options
Option 4 – Material Properties

1. Enter "0.4" & "100" for particle size and percent finer.

The new curve is drawn.
Create *.EDT Database File Options
Option 4 – Material Properties

User’ Sand

<table>
<thead>
<tr>
<th>Particle Size</th>
<th>Percent Finer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>90</td>
</tr>
<tr>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>0.03</td>
<td>5</td>
</tr>
</tbody>
</table>
Create *.EDT Database File Options
Option 4 – Material Properties

1. Enter “Short Course” for Curve ID

2. Click a symbol of WSB Sand to this as the matching curve

3. Click on “Ok”
Create *.EDT Database File Options
Option 4 – Material Properties

1. Click on “Fit”

<table>
<thead>
<tr>
<th>Set No.</th>
<th>Material Description - Set Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material Properties: Dynamic Soil Properties Set No. 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Materials</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No. 5 - EPRI 21-50'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gmo (psf)</th>
<th>τmo (psf)</th>
<th>β</th>
<th>s</th>
<th>v</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1336447</td>
<td>2176.409</td>
<td>1.5</td>
<td>0.68</td>
<td></td>
<td>EPRI 21-50'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vs (ft/sec)</th>
<th>Ei (psf)</th>
<th>K2</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>655.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γsat (pcf)</th>
<th>γwet (pcf)</th>
<th>k (ft/sec)</th>
<th>αR or c</th>
<th>βr</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>95</td>
<td>0.0066</td>
<td>0.000000000</td>
<td>6.79592E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
<th>P</th>
<th>F</th>
<th>s</th>
<th>γtv (%)</th>
<th>OCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.04</td>
<td>2.6</td>
<td>1.7</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2011 GeoMotions, LLC
Create *.EDT Database File Options

Option 4 – Material Properties: MKZ Parameters

1. Click on "ALDO"

2. Click on "Ok"
Create *.EDT Database File Options
Option 4 – Material Properties

1. Click on “Ok”
Create *.EDT Database File Options

1. Click on "Option 5 - Properties of Visco-Elastic" to select it

2. Click on "Edit"
Create *.EDT Database File Options
Option 5 – Properties of Visco-Elastic Half-Space

1. Click on “Ok”
Create *.EDT Database File Options

1. Scroll down
2. Click on "Option 6 - AND_FP D-MOD Calibration" to select it
3. Click on "Edit"
Create *.EDT Database File Options
Option 6 – Dynamic Analysis Solution Control
NCPR = 100 ⇒ Print results every 100th time step

1. Enter “100” in NCPR

2. Click on “Ok”
Interval for Printing Results to Output File in Option 6

Layer 1 - DS-1 Site
Time: 40.96 (sec)

Response Spectrum for Layer 1 - DS-1 Site

NCPR = 1 ⇒ save data every 0.02 sec - time to process ≈ 1 to 10 minutes

Layer 1 - DS-1 Site
Time: 40 (sec)

Response Spectrum for Layer 1 - DS-1 Site

NCPR = 100 ⇒ save data every 2 sec - time to process ≈ 10-20 seconds
Create *.EDT Database File Options

1. Scroll down

2. Select “Option 7 - AND_FP D-MOD Calibration”

3. Click on “Edit”
Create *.EDT Database File Options

Option 7 – Earthquake Record Control
Check Path to Ground Motion File

1. Click on “Plot”
Create *.EDT Database File Options

Plot of Input Ground Motion

1. Click on "Close"
Create *.EDT Database File Options

Option 7 – Earthquake Record Control

1. Click on “Ok”

```
<table>
<thead>
<tr>
<th>Set No.</th>
<th>Earthquake Record Control - Set Identification:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>AND_FP D-MOD Calibration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NCARD</th>
<th>NREC</th>
<th>NFTS</th>
<th>RCRF</th>
<th>Time Step</th>
<th>New Option 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>990</td>
<td>8</td>
<td>0</td>
<td>0.938</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

FINPEQ

C:\ Geotechnical\GeoMotions\Quakes\739AND_FP.eq

NHEAD 8
```
Create Input File – First Iteration

SHAKE Calibration – Evaluation of Rayleigh Damping Coefficients

1. Scroll up

2. Click on “Option 1 – Total Stress\Nonlinear”

3. Click on “Add”

Option 1 has been added to the list of options in input file
Create Input File – First Iteration

1. Select Options 2 and click on “Add”. Do the same for options 4, 5, last set of options 6 and 7 (i.e., AND_FP D-MOD) to add them to the list of input options.

Options 2, 4, 5, 6 and 7 have been added to the list of options in input file.

Options available in EDT file:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 2</td>
<td>Motion: ROCK[href] - Scaling Factor: 2.0153</td>
<td></td>
</tr>
<tr>
<td>Option 3</td>
<td>Motion: ROCK[href] - Scaling Factor: 1.972</td>
<td></td>
</tr>
<tr>
<td>Option 4</td>
<td>Motion: ROCK[href] - Scaling Factor: 1.3272</td>
<td></td>
</tr>
<tr>
<td>Option 5</td>
<td>Motion: ROCK[href] - Scaling Factor: 1.3272</td>
<td></td>
</tr>
<tr>
<td>Option 6</td>
<td>Motion: ROCK[href] - Scaling Factor: 1.3272</td>
<td></td>
</tr>
<tr>
<td>Option 7</td>
<td>Motion: ROCK[href] - Scaling Factor: 1.3272</td>
<td></td>
</tr>
<tr>
<td>Option 8</td>
<td>Motion: ROCK[href] - Scaling Factor: 1.3272</td>
<td></td>
</tr>
</tbody>
</table>

Options saved in input file:

<table>
<thead>
<tr>
<th>Input Set No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Option 1 - Soil Profile No. 1: Short Course</td>
</tr>
<tr>
<td></td>
<td>Option 2 - Soil Profile No. 1: Short Course</td>
</tr>
<tr>
<td></td>
<td>Option 4 - Material Properties: Dynamic Soil Properties Set No. 1</td>
</tr>
<tr>
<td></td>
<td>Option 5 - Properties of Visco-Elastic Half-Space - Layer: 14</td>
</tr>
<tr>
<td></td>
<td>Option 6 - AND_FP D-MOD Calibration</td>
</tr>
<tr>
<td></td>
<td>Option 7 - AND_FP D-MOD Calibration</td>
</tr>
</tbody>
</table>

Copyright

© 2011 GeoMotions, LLC

D-MOD2000 Quick Tutorial - Page No. 56
1. Switch folders until you change to “GeoMotions\ShortCourse\D-MOD” folder

2. Enter “AND_FPcal.inp” in File name

3. Click on “Save”
Save EDT Database File

1. Click on "Save"

2. Click on "Yes"

1. Click on "Save"
1. Enter “AND_FP SHAKE Calibration” for Input Set Description

2. Click on folder icon
1. Double click on "GeoMotions" folder icon

2. Scroll down to display the "ShortCourse" folder

3. Double click on "ShortCourse" folder icon

4. Double click on "D-MOD" folder

5. Click on "Ok"
Output & Auxiliary Files and Output Layer

1. Enter “AND_FPcal.out” for Master Output File

2. Enter “AND_FPcal” for Name of Plot Files
SHAKE Calibration – Evaluation of Rayleigh Damping

Simplified Rayleigh Damping ($n = 0$ & $\xi = 0.5-5.5$)

1. Click on “Calibrate with Frequency…..” to select it

2. Click on “D-MOD”

\[
\alpha_R = \xi_{\text{tar}} \left(\frac{4\pi n}{T} \right) \left[\frac{n}{n+1} \right] = \xi_{\text{tar}} \left(\frac{4\pi}{T} \right) \left[\frac{0}{0+1} \right] = 0
\]

\[
\beta_R = \frac{\xi_{\text{tar}} T}{\pi (1+n)} = \xi_{\text{tar}} \frac{T}{\pi (1+0)} = \xi_{\text{tar}} \frac{T}{\pi}
\]
Execute D-MOD – 1st Iteration

1. Click on “Save”
Execute D-MOD – 1st Iteration

D-MOD2000 Quick Tutorial - Page No. 64
1st Iteration – Process Output Files

1. Click on “Process”
Results are provided in rows and columns every certain number of time steps as defined in Option 6.
Master Output File

For plotting, this file will need to be read every time, which may be time consuming depending on the size of the file, e.g., this file has 271,154 lines.
If we used 200 layers and 30,400 values for the acceleration time history, the output file would have 13,000,000 (! 13 million!) lines of data. It would take about 30 minutes to process.
Output & Plot Files Generated by Processing

Files created from processing of D-MOD’s output files

Output files created by D-MOD
1st Iteration – Process Output Files
Open Acceleration Time History File for Layer 1

1. If necessary, change to the “GeoMotions\ShortCourse\D-MOD” folder

2. Click on “AND_FPCalA1L1.var” file to select it

3. Click on “Open”
1st Iteration – Process Output Files
Open SHAKE Calibration File – PGA & Shear Strain vs. Depth

1. If necessary, change to the GeoMotions\ShortCourse\SHAKE” folder
2. Click on “Short-A15-AND_FP.cal” to select it
3. Click on “Open”
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum & Shear Strain vs. Depth

1. Click on “Graph”
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum

<table>
<thead>
<tr>
<th>ACC File:</th>
<th>C:\Geotechnical\GeoMotions\ShortCourse\D-MOD\AND_FPcalA1L1.var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project:</td>
<td>Total Stress:Nonlinear Analysis * Dt: 0.005</td>
</tr>
<tr>
<td>Profile:</td>
<td>Total Stress:Nonlinear Analysis * Dt: 0.005</td>
</tr>
<tr>
<td>Layer No.:</td>
<td>1</td>
</tr>
<tr>
<td>Earthquake:</td>
<td>C:\Geotechnical\GeoMotions\Quakes\739AND_FP.eq</td>
</tr>
</tbody>
</table>

Damping Values:
- **Response spectrum for 5% damping**

Type of Response Spectrum:
- **Absolute Acceleration**
- Pseudo-Absolute Acceleration
- Relative Displacement
- Relative Velocity
- Pseudo-Relative Velocity

1. Click on **"Response Spectrum for 5% damping"**
2. Click on **"Absolute Acceleration"**
3. Click on **"Other"**
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum

1. Click on “Other”
Display & Plot Results for Layer 1
Open File for Layer 1 from SHAKE Analysis

1. Switch folders until you change to “GeoMotions\ShortCourse\SHAKE” folder

2. Scroll

3. Select the “Short-L1A15D1-99-Column 1-AND_FP.ahl” file

4. Click on “Open”
Display & Plot Results for Layer 1
Compute Spectrum from SHAKE Analysis

1. Click on "Spectra"

2. Click on "Ok"
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum

1. Click on “Ok”
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum & Shear Strain vs. Depth

1. Click on “Close”
2nd Iteration – Evaluation of Rayleigh Damping
Full Rayleigh Damping \((n = 1, 3, 5, 7\ldots \& \xi = 0.5-5.5) \)

1. Enter "5" for \(n \)

2. Click on "D-MOD"
Execute D-MOD – 2nd Iteration

1. Click on “Save”
2nd Iteration – Evaluation of Rayleigh Damping

1. Click on “Process”
2nd Iteration - Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum & Shear Strain vs. Depth

1. Click on "Close"
3rd Iteration – Evaluation of Rayleigh Damping

Full Rayleigh Damping \((n = 1, 3, 5, 7, \ldots \) \& \(\xi = 0.5-5.5 \))

1. Enter “1” for \(n \) and “5” for \(\xi \)

2. Click on “D-MOD” & “Save”

3. Click on “Process”
3rd Iteration - Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum & Shear Strain vs. Depth

1. Click on “Close”
Nonlinear and Effective-Stress Analysis
Better match ⇒ Use $n = 1$ and $\xi = 5$

1. Select “Option 7” from input list

2. Click on “Clear”

3. Click on “No”
Nonlinear and Effective-Stress Analysis

Use $n = 1$ and $\zeta = 5$

1. Click on "Maximum Values"

2. Click on second set of Option 1, i.e., Nonlinear

3. Click on "Edit"
Nonlinear and Effective-Stress Analysis

2. Click on “Ok”

<table>
<thead>
<tr>
<th>D-MOD2000 Option 1: Master Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-MOD - Identification for Input Data Set:</td>
</tr>
<tr>
<td>Nonlinear Effective-Stress: 13 Layers & 13 Materials</td>
</tr>
<tr>
<td>Title:</td>
</tr>
<tr>
<td>Nonlinear Effective-Stress Analysis</td>
</tr>
<tr>
<td>Analysis type control number:</td>
</tr>
<tr>
<td>Number of material layers in the profile:</td>
</tr>
<tr>
<td>Number of material property sets specified:</td>
</tr>
<tr>
<td>Half-space control number:</td>
</tr>
<tr>
<td>System of units to be used:</td>
</tr>
<tr>
<td>Stress-Strain model control number:</td>
</tr>
<tr>
<td>Viscous damping control number:</td>
</tr>
<tr>
<td>Top hydraulic boundary condition control number:</td>
</tr>
<tr>
<td>Bottom hydraulic boundary condition control number:</td>
</tr>
<tr>
<td>"Irregular stress-strain behavior" accuracy control No. 1:</td>
</tr>
<tr>
<td>"Irregular stress-strain behavior" accuracy control No. 2:</td>
</tr>
<tr>
<td>Number of the top saturated soil layer:</td>
</tr>
<tr>
<td>Number of the bottom saturated soil layer:</td>
</tr>
</tbody>
</table>

1. Enter “5” for top saturated layer
1. Enter “AND_FPeff.out” for Master Output File
2. Enter “AND_FPeff” for Name of Plot Files
3. Enter “6” for Output Generated for Layer
4. Enter “AND_FP Nonlinear” for description
Create Input File – Nonlinear Analysis

1. Select SECOND set of Option 1 and click on “Add”, then add Options 2, 4, 5, and SIXTH sets of options 6 and 7

Options 1, 2, 4, 5, 6 and 7 have been added to the list of options in input file

2. Click on “Save”
1. Switch folders until you change to “GeoMotions\ShortCourse\D-MOD” folder

2. Enter “AND_FPeff.inp” in File name

3. Click on “Save”
Save EDT Database File

1. Click on "Save"
2. Click on "Yes"

1. Click on "Save"
Nonlinear and Effective-Stress Analysis

1. Scroll up
2. Select “Option 6 - Motion: P.AND_FP....”
3. Click on “Edit”
Nonlinear and Effective-Stress Analysis
Option 6 – Dynamic Analysis Solution Control

NCPR = 1 ⇒ Print results every time step

1. Enter "1" for NCPR

2. Click on "Ok"
Nonlinear and Effective-Stress Analysis

1. Click on "D-MOD"

2. Click on "Save"
Nonlinear and Effective-Stress Analysis

1. Click on "Process"

2. Click on "Ok"

Process time about 2+ minutes
Nonlinear and Effective-Stress Analysis
Display/Plot Results

1. Click on "Maximum Values"

2. Click on "Plot"
Nonlinear and Effective-Stress Analysis
PGA Profile

1. Click on a symbol

Acceleration & Depth values

Copyright © 2011 GeoMotions, LLC
Nonlinear and Effective-Stress Analysis
Pore Water Pressure Ratio

1. Click on "Show Layers" option
2. Click on "PWP Ratio" option
3. Click on "Close"
1. Click on “Partial Results at Uniform Time Step” to select it

2. Click on “Plot”
Nonlinear and Effective-Stress Analysis
Acceleration vs. Depth Time History

1. Click on the scroll-bar and hold down
Nonlinear and Effective-Stress Analysis
Create PWP Ratio vs. Depth Time History Movie

1. Click on “PWP Ratio”

2. Click on “Record Movie”

3. Scroll down and select “Microsoft Video 1”

4. Click on Camcorder
Nonlinear and Effective-Stress Analysis
Create PWP Ratio vs. Depth Time History Movie

1. Click on Cross Camcorder to stop movie
2. Click “Cancel”
3. Click on “Close”
1. Click on “Time Dependent Variables for Layer” to select it.

2. Click on “Plot”.

Nonlinear and Effective-Stress Analysis
Display/Plot Results
Nonlinear and Effective-Stress Analysis
Open File for Layer No. 6

1. Switch folders until you change to “GeoMotions\ShortCourse\D-MOD” folder

2. Click on “AND_FPeffA1L6.var” to select it

3. Click on “Open”
Nonlinear and Effective-Stress Analysis
Display/Plot Results – Layer 6

1. Click on “Stress-Strain Loops” to select it.
Nonlinear and Effective-Stress Analysis
Display/Plot Results – Layer 6

1. Click on “Plot Input Motion” to select it
2. Click on Fixed Axis” to select it
Nonlinear and Effective-Stress Analysis
Display/Plot Results – Layer 6

1. Drag scroll-bar

2. Click on “Normalized PWP”
Nonlinear and Effective-Stress Analysis
Display/Plot Results – Layer 6

1. Click on "Close"
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on “Compare Results of Several Analyses”

2. Click on “Ok”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on “Open”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

2. Click on “AND_FPeffaux.max” to select it

3. Use ctrl+click to select “G06_FPeffaux.max”

4. Use ctrl+click to select “GIL_FPeffaux.max”

5. Use ctrl+click to select “HOW_FPeffaux.max”

6. Click on “Ok”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on "Read"

2. Click on "Ok"
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Enter “AND_FP” in Description text box for first file
2. Enter “G06_FP”, “GIL_FP” & “HOW_FP” for other files
3. Click on “Plot”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on “Show Layers”
2. Click on “PWP Ratio”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on "Close"
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on "Response Spectrum"
2. Click on "Yes"

D-MOD2000 Quick Tutorial - Page No. 116
Nonlinear and Effective-Stress Analysis

Compare Results from Several Analyses

1. Click on "Open"
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Switch folders until you change to “GeoMotions\ShortCourse\D-MOD”

2. Click on “AND_FPeffaux.acc” to select it

3. Use ctrl+click to select “G06_FPeffaux.acc”

4. Use ctrl+click to select “GIL_FPeffaux.acc”

5. Use ctrl+click to select “HOW_FPeffaux.acc”

6. Click on “Ok”
Nonlinear and Effective-Stress Analysis

Compare Results from Several Analyses

1. Click on “Read”

2. Click on “Ok”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

2. Click on “Plot”

1. Enter the names for the spectra plots
Nonlinear and Effective-Stress Analysis

Compare Results from Several Analyses

1. Click on “Close”
Nonlinear and Effective-Stress Analysis
Compare Results from Several Analyses

1. Click on "Close"
Nonlinear and Effective-Stress Analysis

1. Click on "Play AVI Movies"

2. Click on "Play"

Options available in EDT file:
- Option 1 - Nonlinear Effective Stress: 13 Layers & 13 Materials
- Option 2 - Soil Profile No. 1: Column 1 - Short Course
- Option 4 - Material Properties: Dynamic Soil Properties Set No. 1
- Option 5 - Properties of Visco-Elastic Half-Space: Layer 14
- Option 6 - Motion: PAND, FP - Scaling Factor: 1.3272

Options saved in input file:
- Input File Description: AND_FP Nonlinear

Input & Output File Options:
- Create new EDT file using default data
- Use Excel: 25 Hz
- Calibrate with Frequency Domain Analysis
- T = 4.27, n = 1, & = 5
- Print Summary of Master Output File
- Print EDT File
- Print Input File

Plotting Options:
- Maximum Values
- Partial Results at Uniform Time Step
- Response Spectrum
- Time Histories
- Compare Results of Several Analyses
- Time Dependant Variables for Layer

Utility Analysis & Utilities Options:
- Automatically save EDT & Input Files
- Earthquake Engineering Analyses & Utilities
- Create Excel CSV Files
- Plot

Copyright © 2011 GeoMotions, LLC
Nonlinear and Effective-Stress Analysis

1. Click on open folder icon
Nonlinear and Effective-Stress Analysis
Open AVI Movie File

1. Switch folders until you change to "GeoMotions\ ShortCourse\ D-MOD"

2. Click on "Motion.avi" file to select it

3. Click on "Open"
Nonlinear and Effective-Stress Analysis

1. Click on open folder icon
Nonlinear and Effective-Stress Analysis
Open AVI Movie File

1. Switch folders until you change to “GeoMotions\ ShortCourse\ D-MOD”

2. Click on “PWP.avi” file to select it

3. Click on “Open”
Nonlinear and Effective-Stress Analysis

1. Click on “>”

2. Click to close
A second approach to estimate viscous damping parameters is by calibrating the D-MOD analysis against a linear SHAKE analysis for small strain conditions (i.e., use G_{max} and a constant value of 5% damping for all soil layers). More detailed information on this procedure is presented by Stewart et al (2008).

1. Develop a SHAKE column and perform a small strain linear SHAKE analysis to obtain the acceleration time history at the surface level. Use G_{max} and 5% damping for all soil layers (i.e., use “zero” type soils in Option 2).

2. Develop the D-MOD column to match the SHAKE column as close as possible; use $n = 0$ and $\xi = 5$ for first iteration.

3. Perform a Total-Stress/Linear-Elastic analysis with D-MOD.

4. Compare the surface response spectrum from SHAKE to the response spectrum from D-MOD.

5. Adjust n and ξ and repeat from step 3 until a match between the SHAKE and D-MOD spectra is obtained within a reasonable degree of tolerance. Also, compare peak acceleration & Shear Strain vs. depth obtained from SHAKE and D-MOD.

1. Select “Option 7” from input list

2. Click on “Clear”

3. Click on “No”
SHAKE Small Strain Calibration

2. Click on "Edit"

1. Click on third set of Option 1, i.e., Linear Elastic
2. Click on “Ok”

1. Enter “5” for top saturated layer

0 ⇒ Linear-Elastic Analysis
1. Enter “AND_FPsmall.out” for Master Output File

2. Enter “AND_FPsmall” for Name of Plot Files

3. Enter “1” for Output Generated for Layer

4. Enter “AND_FP Small Strain Calibration” for description
Create Input File – SHAKE Small Strain Calibration

1. Select THIRD set of Option 1 and click on “Add”, then add Options 2, 4, 5, and SIXTH sets of options 6 and 7

2. Click on “Save”

Options 1, 2, 4, 5, 6 and 7 have been added to the list of options in input file.
1. Switch folders until you change to “GeoMotions\ShortCourse\D-MOD” folder

2. Enter “AND_FPSmall.inp” in File name

3. Click on “Save”
Save EDT Database File

1. Click on "Save"
2. Click on "Yes"
Create Input File – SHAKE Small Strain Calibration

1. Scroll up

2. Select “Option 6 - Motion: P.AND_FP....”

3. Click on “Edit”
Create Input File – SHAKE Small Strain Calibration
Option 6 – Dynamic Analysis Solution Control
NCPR = 100 ⇒ Print results every 100th time step

1. Enter “100” for NCPR

2. Click on “Ok”
1st Iteration – Evaluation of Rayleigh Damping
Full Rayleigh Damping (n = 1, 3, 5, 7... & ξ = 0.5–5.5)

2. Click on “D-MOD”

1. Click on “Calibrate with Frequency.....” to select it
Execute D-MOD – 1st Iteration

1. Click on “Save”
1st Iteration – Process Output Files

1. Click on "Process"
1st Iteration – Process Output Files
Open Acceleration Time History File for Layer 1

1. If necessary, change to the “GeoMotions\ShortCourse\D-MOD” folder

2. Click on “AND_FPsmallA1L1.var” file to select it

3. Click on “Open”
1st Iteration – Process Output Files
Open SHAKE Calibration File – PGA & Shear Strain vs. Depth

1. If necessary, change to the "GeoMotions\ShortCourse\SHAKE" folder
2. Click on "AND_FPsmallA1-P.AND_FP.cal" file to select it
3. Click on "Open"
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum, PGA/Shear Strain vs. Depth

1. Click on “Graph”
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum

1. Click on “Response Spectrum for 5% damping”
2. Click on “Absolute Acceleration”
3. Click on “Other”
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum

1. Click on “Other”
Display & Plot Results for Layer 1
Open File for Layer 1 from SHAKE Analysis

1. Switch folders until you change to “GeoMotions\ ShortCourse\ SHAKE” folder

2. Select the “AND_FPsmall-L1A1D2-1-Column 1-P.AND_FP.ahl” file

4. Click on “Open”
Display & Plot Results for Layer 1
Compute Spectrum from SHAKE Analysis

1. Click on "Spectra"

2. Click on "Ok"
1. Click on “Ok”
Display & Plot Results for Layer 1
Compare to Frequency Domain Spectrum, PGA/Shear Strain vs. Depth

1. Click on “Close”
2nd, 3rd, 4th Iterations – Evaluation of Rayleigh Damping

1. Repeat for \(n \) equal to 0, 3 & 5
SHAKE Small Strain Calibration
Better Match ⇒ Use $n = 1$ & $\zeta = 5$ for Nonlinear Analysis
1. Click on "Exit"