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1. Introduction 

1.1. Background 

 The deep soil deposits of the Mississippi embayment have a pronounced yet not 
fully understood influence on the amplification and attenuation of ground motions 
associated with the New Madrid seismic zone (NMSZ). The NMSZ is considered capable 
of producing large earthquakes (M>7.0). In the embayment there is an absence of 
recorded ground motions of significant level (M>5.0). The embayment is a trough like 
depression that plunges southward along an axis that approximates the course of the 
Mississippi River, Figure 1-1.  As shown in Figure 1-2, the embayment is filled with 
sediments of clay, silt, sand, and gravel to depths reaching 500 meters to 1000 meters. 

 In a study by Pezeshk et al. (1998) titled “Seismic Acceleration Coefficients for 
West Tennessee” a detailed analysis of the seismic hazard potential and the influence of 
local soils on anticipated ground motion levels are presented.  Since this study several 
advances have been made in the assessment of seismic hazard including: 

1. Development of a new one-dimensional non-linear wave propagation model 
(DEEPSOIL) to evaluate the amplification/attenuation characteristics of the deep 
soil deposits. The newly developed model is specifically designed to account for 
the effect of confining pressure on shear modulus and damping characteristics of 
soil deposits.  The new model shows that the propagated motions are significantly 
higher than would be obtained using conventional models (Hashash and Park, 
2001, Hashash and Park, 2002, Park and Hashash, 2003). Preliminary analyses 
using this model show that there is significant amplification of long period waves 
through the thick deposits of the embayment. The deep deposits are capable of 
transmitting some high frequency components of the ground motion as well. 

2. Development of additional information regarding the geology of the Mississippi 
embayment. 

3. Development of additional information on seismicity in the New Madrid seismic 
zone. 

1.2. Probabilistic seismic hazard analysis (PSHA) 

The seismic hazard from a PSHA is an aggregate risk from potential earthquakes 
of many different magnitudes occurring at many different source-site distances. Each of 
the potential earthquake scenarios is different in terms of its ground motion parameters, 
such as PGA and spectral accelerations. The site coefficients, defined as a function of the 
ground motion parameters, will be different for the various earthquake scenarios. 
Applying different site coefficients for different ground motions will preserve the 
probabilistic nature of the PSHA. This is seldom done in practice and the combined sum 
of the future seismic hazards, represented in selected ground motion parameters, is 
treated as originating from a single source (e.g. NEHRP).  
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1.3. Proposed procedure to develop probabilistic site coefficients 

 In this study typical profiles in West Tennessee are selected to determine whether 
the new developments will result in different acceleration coefficients compared to the 
National Earthquake Hazard Reduction Program (NEHRP).  The accuracy and the 
conservatism of the NEHRP amplification factors are assessed.  

The proposed procedure to develop fully probabilistic site coefficients, is 
illustrated in Figure 1-3 and comprises five main steps:  

 
Step 1: Selection of site locations, site profiles, and dynamic properties (Sections 2 and 

3). 
 
Step 2: Generation of suites of ground motion time series: The motions when use in 

probabilistic seismic hazard analysis results in a uniform hazard spectra that 
match the USGS B/C hazard maps. The procedure is discussed in Section 4. 

 
Step 3: Conversion of B/C motions to hard rock motions: The generated motions are 

then converted to hard rock motions for use in site response analysis.  
 
Step 4: Site response analysis: The suite of hard rock motions is propagated through 

Uplands and Lowlands and site specific profiles (Section 3). The characteristic 
ground motions are propagated using nonlinear analysis. The ground motions 
from gridded seismicity are propagated using equivalent linear analysis. Both 
the nonlinear and equivalent linear analyses are performed using DEEPSOIL. 
The response spectra of the motions are used to develop the uniform hazard 
response spectrum.  

 
Step 5: Determination of probabilistic site coefficients: Probabilistic site coefficients 

are computed as the ratio of the surface uniform hazard response spectrum 
(UHRS) to the B/C boundary UHRS (Section 5).  
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Figure 1-1.  Plan view of the Mississippi embayment (after Ng et al., 1989). 
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Figure 1-2.  East-west profile view of the Mississippi embayment through Memphis and 

Shelby County (after Ng et al., 1989). 
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Figure 1-3. Probabilistic site coefficients estimation procedure flowchart. 
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2. Selection of Study Sites 

 Several sites in West Tennessee are considered in this study.  Table 2-1 and 
Figure 2-1 provide the locations of all sites considered in this study as well as the depth 
of unconsolidated soil deposits using a database developed by Van Arsdale and TenBrink 
(2000).  All these sites are located within the Mississippi embayment.   

2.1. NEHRP/NCHRP Site Classification and Factors 

 
According to the NCHRP Specs Section 3.4.1 (similar to NEHRP provisions 

FEMA, 1997),), design response spectra (Figure 2-2) for the MCE and the expected 
earthquake shall be constructed using the accelerations from national ground motion 
maps.  Design earthquake response spectral accelerations at short periods, SDS, and at 1-
second period, SD1, are determined by: 
 

 
DS a sS F S=  (2-1) 

 
and  
 

 
1 1D VS F S=  (2-2) 

 
where Ss and S1 are the 0.2-second period spectral acceleration and 1-second period 
spectral acceleration, respectively, on Class B rock (Table 2-2) from ground motion maps 
and Fa and Fv are site coefficients as given in Table 2-3 and Table 2-4, respectively.   
 

According to NCHRP Specs Table 3.4.2-1 (Table 2-2 given below) titled "Site 
Classification," a site class B is a rock site with average shear wave velocity of top 100 ft 
(30 m) of soil to be 2500 ft/s < Vs< 5000 ft/s or 760 m/s < Vs< 1500 m/s.  Similarly, a site 
class C is a very dense soil and soft rock with 1200 ft/s < Vs< 2500 ft/s or 360 m/s < Vs< 
760 m/s.  Therefore, a B-C boundary would be a soil profile having an average shear 
wave velocity of 2500 ft/sec or 760 m/s.   In West Tennessee, in particular, in Memphis, 
the B/C boundary is located approximately 1000 ft below the ground surface (Pezeshk et 
al., 1998).   Therefore, using site coefficients Fa and Fv, which are for only the top 100 ft 
of soil, is not appropriate in West Tennessee.   

2.2.  Classification of Sites Studied 

The boring logs of the sites studied are used to determine site class for each 
location.  Boring logs of all the sites studied can be found in Pezeshk et al. (1998).  Table 
2-5 provides a summary of SPT N values for all the sites studies.  The soil classification 
for each site is determined at the bottom of Table 2-5.  
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Table 2-1.  Sites Considered in this Study. 

Site Name Latitude Longitude Depth (m) 
Route 14 89.824 35.308 750 
Somerville 89.359 35.279 530 
Covington 89.625 35.400 710 
Brownsville 89.260 35.539 525 
Newbern 89.248 35.138 440 
Jackson 88.920 35.635 350 
Trenton 88.947 35.965 460 
Paris 88.336 36.267 50 
Wynnburg 89.475 36.321 600 

 
 

Table 2-2.  Site Classification. 

Soil 
Profile 
Type 

 
Description 

sV  
(ft/sec) 

uS  
(psf) 

A Hard Rock 5000sV >   
B Rock   
C Very Dense 

Soft Rock 
50N >  

2500 5000sV< ≤  2000uS ≥  

D Stiff Soil 
15 50N< <  

1200 2500sV< ≤  1000 2000uS< ≤  

E PI>20 
W> 40 

600 1200sV< ≤  500uS ≤  

F Need Site 
Specific Study 

  

 
 
 
 
 

Su=undrained Shear Strength 
PI = Plastic Index 
N = Standard penetration Resistance
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Table 2-3.  Values of Fa
 as a Function of Site Class and Mapped Short-Period Spectral 

Acceleration. 

 
Mapped Maximum Considered Earthquake Spectral 

Response Acceleration at Short Period 
 

Site 
SS < SS SS SS SS 

A 0.8 0.8 0.8 0.8 0.8 
B 1.0 1.0 1.0 1.0 1.0 
C 1.2 1.2 1.1 1.0 1.0 
D 1.6 1.4 1.2 1.1 1.0 
E 2.5 1.7 1.2 0.9 a 
F A a a a a 

 
 

Table 2-4.  Values of Fv
 as a Function of Site Class and Mapped 1 Second Period Spectral 

Acceleration. 

 
Mapped Maximum Considered Earthquake Spectral 

Response Acceleration at 1 Second Period 
 

Site 
S1 < S1 S1 S1 S1 

A 0.8 0.8 0.8 0.8 0.8 
B 1.0 1.0 1.0 1.0 1.0 
C 1.7 1.6 1.5 1.4 1.3 
D 2.4 2.0 1.8 1.6 1.5 
E 3.5 3.2 2.8 2.4 A 
F a a a a a 
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NMSZ Fictitious Faults and 9 selected sites
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Figure 2-1. Sites considered in this study. 
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Figure 2-2. NEHRP recommended response spectrum. 
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3. DEEPSOIL and Dynamic Properties for Site Response Analysis 

 An important feature of this study is the use of a new site response analysis code 
DEEPSOIL to simulate the influence of the very deep unconsolidated embayment deposits on 
the the propagated ground motion. This section provides a brief description of DEEPSOIL and 
the dynamic soil properties selected for the 9 sites in western Tennessee. These properties are 
used in developing the input for DEEPSOIL 

3.1. DEEPSOIL: Site response analysis program 

DEEPSOIL is a new one-dimensional (1-D) site response analysis program developed to 
accurately simulate wave propagation through very deep deposits. A detailed description of the 
model can be found in (Hashash and Park, 2001; Hashash and Park, 2002; Park and Hashash, 
2003). The model incorporates several important enhancements over conventional site response 
analysis programs: 

1. Non-linear time domain analysis:  

a. Pressure dependent modified hyperbolic soil model: In non-linear analysis a new 
confining pressure dependent nonlinear hyperbolic soil model is used. The model 
accounts for the change in dynamic soil properties due to increasing soil depth.  

b. Viscous damping formulation: In non-linear analysis, viscous damping is often 
used to represent soil damping at zero strain as most soil constitutive models are 
nearly linear at very small strain strains. The program includes a new viscous 
damping formulation to reduce the artificial damping introduced numerically 
through uncontrolled frequency dependent viscous damping.  

c. Numerical integration: The program includes a new numerical integration scheme 
to increase numerical accuracy and efficiency in modeling the nonlinear behavior 
of the soil.  

2. Equivalent linear frequency domain analysis: When performing equivalent linear 
frequency domain analysis the user can use an unlimited number of layers and material 
types. This removes the limitations found in several existing programs such as 
SHAKE’91. 

The use of the non-linear analysis is appropriate for propagation of strong ground motion while 
the equivalent linear analysis is appropriate for propagation of weaker motion. In order to 
perform a non-linear or an equivalent linear site response analysis material properties have to be 
selected for the site(s) of interest. 

3.2. Shear wave velocity profile 

 Romero et al. (2001) classified the embayment into two categories (Figure 3-1) based on 
geologic age. Holocene-age deposits (termed Lowlands) are found along the floodplains of the 
Mississippi River and its tributaries whereas Pleistocene-age deposits (termed Uplands) are 
located in the interfluve, terrace regions. Generic shear wave velocity profiles are developed for 
these two categories (Figure 3-2).  The Lowlands profile shows lower shear velocity at the upper 
70 m compared to the Uplands profile. The profiles are identical below 70 m. The site response 
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analyses performed in this study use the generic profiles as well interpreted site-specific shear-
wave velocity profiles obtained from Pezeshk et al. (1998). 

3.3. Zero-strain viscous damping profile 

 During the Enola Earthquake (M = 4.5, 1999), recordings were made in the Mississippi 
embayment at 9 stations ranging in thickness from 250 m to 720 m. The earthquake generate 
very weak motion, the soil response was primarily linear. In the absence of other embayment 
specific data, the recordings were used to back-calculate the viscous damping properties. The 
viscous damping profile has a damping ratio of 3.5 % at the surface and 0.4 % at the bottom of 
the 1000 m profile (Figure 3-3). The proposed viscous damping profile is higher than the profile 
developed by EPRI (1993). 

3.4. Dynamic soil property characterization 

 The laboratory tests performed by Laird and Stokoe (1993) and Chang et al. (1989), have 
been used to develop the confining pressure dependent soil model and to characterize the 
confining pressure dependent soil curves.  

While the laboratory tests results by Chang et al. (1992) are a valuable resource for 
characterizing the soil of Mississippi embayment, it is difficult to estimate the soil behavior at 
greater depths/higher confining pressure due to low confining pressures under which the soil 
samples were examined. 

Laird and Stokoe (1993) performed resonant column and torsional shear tests at strain 
levels up to 10-3 and confining pressures up to 3.5 MPa using remolded sand specimens (washed 
mortar sand). Low and high amplitude cyclic torsional shear and resonant column tests were 
used to determine the effect of strain amplitude and confinement on shear modulus and damping 
curves. Measurements show that increase in confining pressure results in lesser shear modulus 
degradation at a given cyclic shear strain. Confining pressure increase has a significant influence 
on damping as well.  Small strain damping decreases with an increase in confining pressure due 
to an increase in number of particle contacts, which is the main factor that dissipates energy at 
low amplitude strain. Based on the tests by Laird and Stokoe, EPRI (1993) proposed design 
curves for cohesionless soils in the general range of gravelly sands to low plasticity silts or sandy 
clays.  
 The viscous damping properties, or damping ratios at small strains, from the laboratory 
test data are not used. Instead, the viscous damping properties back calculated from the weak 
motion recordings were utilized. The viscous damping properties are higher than the laboratory 
test data because there are other mechanisms responsible for wave attenuation such as wave 
scattering. Such complex mechanisms are indirectly accounted for by using the viscous damping. 

 Since the viscous damping properties can be separated from hysteretic damping, the 
viscous damping back-calculated can be added to the hysteretic damping estimated from 
laboratory tests or available generic curves. In this process, the original viscous damping values 
should be removed so that only the hysteretic damping is added. The resulting modulus 
degradation and damping curves are shown in Figure 3-4.  

3.5. Comparison of the estimated dynamic soil curves with the Mississippi embayment soils 

 The developed curves are compared/calibrated to results of actual testing of the 
embayment soils, performed by Chang et al. (1989). Chang et al. (1989) collected 35 soil 
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samples in the northern Mississippi embayment region and the samples were tested through use 
of resonant column. The range of soil groups sampled includes alluvial sands, sands and gravels, 
silty to sandy clays, and loess. Soils have been categorized into 9 groups (Table 2-1). The 
resonant column tests have been performed under confining pressures of 5, 20, 55, and 60 psi to 
determine the effect of confining pressure. The laboratory test results have been incorporated in 
defining the dynamic soil curves. 

 Figure 3-5 to Figure 3-10 show the developed dynamic curves and the laboratory test data 
for 6 soil groups tested by Chang et al. (1989). Figure 3-5 to Figure 3-7 compares cohesionless 
soils (soil groups A1 to A3) to the proposed dynamic curves. G/Gmax curves agree well with the 
developed curves for all three soil groups. The developed curves are conservative showing more 
confining pressure dependency than the laboratory test data. The viscous damping is near the 
upper bound of the embayment soils. The shapes of the hysteretic damping components of the 
damping curves are very similar. 

 The cohesive soils show less pressure dependency than cohesionless soils, as shown in 
Figure 3-9 to Figure 3-10. The overall G/Gmax shapes deviate from cohesionless soils, showing 
more pronounced S shaped curvature. The viscous damping is much higher than cohesionless 
soils, and is as high as 9% for the upper bound curves. 

 The embayment stratigraphy shown in Figure 1-2 is complex with alternating layers of 
sands and clays. In addition, the depths of the layers change along the embayment, making it 
impossible to assign depths to alternating layers. In addition, the clay samples (B1 and B2) do 
not represent the deep clay layers, since the high confining pressure would highly alter the 
characteristics of the soils and the surface clay soils cannot be used to estimate the behavior of 
deep clay layers. Therefore, instead of using different soil curves for different layers of soil in the 
embayment, the proposed curves, developed using cohesionless soils, are used throughout the 
profile. 

3.6. Evaluation of Nonlinear Analysis vs. Equivalent Linear Analysis Site Response Analysis. 
To determine how the nonlinear results are different than the current state-of-practice, 

which is based on the equivalent linear analysis, we performed both analyses for a site in West 
Tennessee (Covington, Tennessee).  The following is a discussion of the results.  

In this example, combinations of two ground motions (Cov_1Hz_1 and Cov_5Hz_1) and 
two soil profiles are used (126ft and 1738 ft). Same values of shear velocity as B/C boundary 
(760 m/sec) is used below the soil profile. 

 Both the nonlinear results from DEEPSOIL and the equivalent linear are presented in 
Figure 3-11 through Figure 3-14.  The comparison between the shallow profile (126 ft) and deep 
profile (1738 ft) is pronounced at certain frequencies. At deep profiles, the spectral amplification 
is much lower than shallow profiles. At long periods (>1 sec), relevant for long structures, the 
equivalent linear analysis underestimates the surface response. At short periods (<0.1 sec) the 
equivalent linear analysis overestimates the surface response.  
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Table 3-1.  NMSZ soil groups used in laboratory tests by Chang et al. (1992). 

Soil Group Description Range of Depth of Boring 
(ft) 

A1 Alluvial sand (SP-SM) 5’- 40’ 
A2 Terrace sand and gravel 

(SP-SW-SM-SC-GP) 
5’- 44’ 

A3 Jackson fine sand (SP) 25-71’ 
B1 Silty to sandy clay (CL) 1-33’ 
B2 Jackson clay (CL-CH) 8’-25’ 
C Loess 4.5-53.6’ 
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Figure 3-1. Lowlands and Uplands classification of Mississippi embayment according to Romero 
and Rix (2001). 
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Figure 3-2.  Shear wave velocity profiles of the Mississippi embayment after Romero  

and Rix (2001). 
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Figure 3-3. Comparison of a) back-calculated viscous damping profile and b) profile developed 

by EPRI (1993).  
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(b) Damping ratio curves from confining pressure dependent model combined with back-

calculated viscous damping. 
 
 

Figure 3-4. Influence of confining pressure on modulus degradation and damping ratio of soil. 
data points are from Laird and Stokoe (1993) and lines represent the nonlinear soil model used in 

DEEPSOIL (Hashash and Park 2001). 
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Figure 3-5. Comparison of the proposed dynamic material properties with the laboratory test data 
of soil group A1 by Chang et al. (1989). 
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Figure 3-6. Comparison of the proposed dynamic material properties with the laboratory 

test data of soil group A2 by Chang et al. (1989). 
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Figure 3-7. Comparison of the proposed dynamic material properties with the laboratory 

test data of soil group A3 by Chang et al. (1989). 
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Figure 3-8. Comparison of the proposed dynamic material properties with the laboratory 

test data of soil group B1 by Chang et al. (1989).  
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Figure 3-9. Comparison of the proposed dynamic material properties with the laboratory 

test data of soil group B2 by Chang et al. (1989). 



 24 Draft: August 12, 2003 

0

0.2

0.4

0.6

0.8

1
G

/G
m

ax
 

654

3
2

1

(a) Upper bound

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

1: Proposed 34.5 kPa
2: Proposed curve 137.9 kPa
3: Proposed curve 414.0 kPa

G
/G

m
ax

 

Shear strain, γ (%)

654

3
2

1

(c) Lower bound

0

0.2

0.4

0.6

0.8

1

G
/G

m
ax

 

654

3
2

1

(b) Mean

0

5

10

15

20

25

0.0001 0.001 0.01 0.1 1

4: Soil Group C Upper 34.5 kPa
5: Soil Group C Upper 137.9 kPa
6: Soil Group C Upper 414.0 kPa

D
am

pi
ng

 (%
)

Shear strain, γ (%)

6
54

3
2

1(f) Lower bound

0

5

10

15

20

25

D
am

pi
ng

 (%
)

65
4

3
2

1(d) Upper bound

0

5

10

15

20

25

D
am

pi
ng

 (%
)

654

3
2

1(e) Mean

 
Figure 3-10. Comparison of the proposed dynamic material properties with the laboratory 

test data of soil group C by Chang et al. (1989). 
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Figure 3-11.  126-ft profile using time histories generated using 1Hz case. 
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Figure 3-12.  126-ft profile using time histories generated using 5Hz case. 
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Figure 3-13.  1738-ft profile 126-ft profile using time histories generated  
using 1Hz case. 
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Figure 3-14.  1738-ft profile using time histories generated using 5Hz case. 
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4. Ground Motion Times Series and Probabilistic Seismic Hazard 
Analysis 

4.1. Probabilistic seismic hazard analysis to simulate USGS hazard maps  

The purpose of the proposed PSHA is to develop a suite of motions that as a sum 
results in the same hazard level as the USGS hazard maps. Identical methodology and 
assumptions as those used in development of the USGS hazard maps are used. The main 
framework developed by Wen and Wu (2001) is incorporated. Several important changes 
have been made to the procedure: 

 
a) Implementation of the newest version of synthetic motion generation code 

SMSIM (Boore 2002), and 
 

b) Representation of the NMSZ faults consistent with USGS hazard maps as three 
parallel fictitious faults.  

 
Details of the proposed PSHA procedure are presented in the following and 

schematic flowchart is shown in Figure 4-1. The results of the simulations are compared 
to the 1996 USGS hazard maps for selected locations in the embayment.  

4.2. Source characterization 

USGS hazard maps define two types of sources, a) gridded seismicity and b) 
characteristic sources. The gridded seismicity sources are intended to cover the historical 
seismicity recorded. These sources represent seismicity from unknown faults to which a 
specific value of recurrence interval and magnitude size cannot be assigned. The 
characteristic sources represent sources at which the recurrence interval, magnitude, and 
geologic shape can be approximately estimated based on the geologic evidence. The 
gridded and characteristic sources are treated separately and added to the final seismic 
hazard. The details on how the two source types are simulated are described in the 
following sections. 

4.2.1. Gridded seismic sources 
The annual recurrence rate of earthquakes is based on seismicity database from 

USGS Open-File-Report 96-532 (Frankel et al. 1996). USGS seismicity data is defined 
for every 0.1° x 0.1° grid within central and eastern United States (Figure 4-2 and Figure 
4-3). The database gives a, b, and mmax. A uniform value of 4.71 is used for mlow in the 
central and eastern United States. Using the four values, the bounded Gutenberg Richter 
recurrence relationship is defined (discussed in detail later). USGS uses the recurrence 
relationship to estimate the probabilities of various magnitudes to occur at the grid. 

The proposed simulation procedure needs to generate actual sources that in sum 
agree with the recurrence relationship defined at each grid. The theory of probability is 
used to accomplish this goal. According to the probability theory, a sufficient number of 
random numbers generated will result in the mean value. The mean number in the 
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simulation is the seismicity (mean rate of the earthquakes to exceed mlow). The number of 
sources generated should be equal to the seismicity. The magnitude assigned to the 
generated sources should be consistent with the recurrence relationship of the grid.  

The process of determining future sources is performed in the following two 
steps: 

 
a. Number of earthquakes within each grid 

For a Poisson process, the probability of a random variable N (number of 
occurrences of seismic events) occurring X times during a given time interval t 
(equivalent to PDF) is: 
 

[ ] ( )
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k

X

k tt
P N X e

X
λλ −= =  

(4-1) 

where λk is the annual occurrence rate of earthquakes with body wave magnitude higher 
than 5 and t is the period of simulation. Therefore, tλk is the average number of 
occurrences of the event in the time interval. Then, the probability that the events 
occurring up to nk times during t (equivalent to CDF, Figure 4-4) is: 
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The number of earthquakes within each grid can be determined by generating a 
random variable uk, with a uniform distribution between 0 and 1, and relating it to the 
CDF as:  
 [ ] [ ]1k k kP N n u P N n−≤ < ≤ ≤  (4-3) 

which is equivalent to:  
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Where X is the number of simulated events within the selected grid. The number of 
occurrences during the time interval is nk. To result in the number of earthquakes within 
each grid that is identical to the mean seismicity, sufficient number of simulations is 
required. 9000 simulations of 10-year period are performed. 
 
b. Magnitude characterization 

The random number, generated to determine the number of earthquakes within 
each grid for the given period of simulation, is also used to determine the corresponding 
magnitudes using the following equation, which is derived from Gutenberg-Richter law 
with lower (mlow) and upper bound (mmax): 
 ( )( )max

10log 1 1 10 lowm M
b low km m u −= − − −  (4-5) 

 
c. Location selection 

Within each grid, two random numbers of uniform distributions are chosen along 
latitude and longitude directions within each cell to randomize the location of the source. 
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4.2.2. Characteristic earthquakes 
Characteristic earthquakes are assumed to occur in the NMSZ (Figure 4-5). USGS 

NMSZ fault geometries are used which consist of three fictitious faults, shown in Figure 
4-6. The faults’ contribution to the hazard are weighted such that the center fault has a 
1/3 and each of the two outer faults has a 1/3 wt in 1996 maps (Figure 4-1). The 
characteristic events were not randomly generated as in simulating the gridded seismic 
sources. The recurrence rate of characteristic events is fixed at 1000 years in 1996 maps, 
the number of occurrences within the simulation period can be calculated. The period of 
simulation in this study is 90,000 years. The number occurrences of characteristic 
earthquakes are 90 for 1996 maps. Since the faults have different weights, the number of 
sources for each of the fault should be assigned accordingly. For 2002 maps, 30 sources 
should be generated at each fault.  

For this study ground motions are simulated within a reference area (within 500 
km from the site, except for characteristic earthquake) over a 10-year period using the 
tectonic and seismological data provided in Frankel et al. (1996).  A total of 9000 
simulation of 10-year period are carried out to provide sufficient number of ground 
motions for statistical analysis.  The ground motions generated are then used to develop 
the uniform hazard response spectra.   

USGS uses the closest distances to each of the three faults to calculate the 
cumulative seismic hazard at the site. This means that only a single scenario (single M 
and R) possible at each of the three fault. M = 8.0 is used for 1996 maps.  

4.2.3. Ground motion time history development and estimation of ground motion 
parameter  
The magnitude and location information from the source characterization process is used 
to generate synthetic ground motions using stochastic model SMSIM (Boore, 2000). In 
this study, the newest version of SMSIM (ver. 2.2) is incorporated (Boore, 2002). 

For 2002 maps, point sources single corner and double corner models are used. 
Single corner and double corner models are assigned the same weight, both for gridded 
seismic sources and characteristic sources (Figure 4-1).  

4.3. UHRS development 

The procedure for developing the UHRS is shown in a flowchart in Figure 4-7. The 
response spectrum of each of the propagated ground motions are calculated and compiled. 
Each of the points in the response spectrum represents the ground motion parameter Y. 
The annual probability of the source exceeding a particular value y* can be calculated 
using equation.  
 *

*

ln

1k i i
Y

y YP Y y Fλ λ λ
σ

  −
= ⋅ > = ⋅ −     

  
 

(4-6) 

where λi for all of the generated motions is 1/total simulation years; σlnY is the lognormal 

standard deviation, 
*

ln

1
Y

y YF
σ

  −
−  

  
 is CDF of Y to exceed y*. The annual probability of 

occurrence is calculated for a range of y*. This procedure is repeated for all of the ground 
motions generated. The results are summed up. From the summation of all probabilities, 
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the ground motion parameter corresponding to the desired design probability of 
exceedance is calculated.  

4.4. Comparison with USGS hazard maps 

The simulated UHRS at B/C boundary are compared to 1996 USGS mapped 
hazard and NEHRP Site B design response spectrum. USGS hazard maps provide 4 
ground motion parameters (PGA, 0.2, 0.3, and 1.0 sec SA). The NEHRP Site B design 
spectrum is used to represent the hazard at other periods at B/C boundary. Seismic hazard 
corresponding to 2% and 10% in 50 years probability of exceedance seismic hazards are 
compared and provide a very good match.  
 The generated motions are representative of B/C boundary condition. To use them 
as input motion imposed at the bottom of the bedrock, the motions have to be converted 
back to the hard rock condition. The amplification of the motion at the B/C boundary is 
calculated using the transfer function shown in Figure 4-8. By applying the inverse of the 
transfer function, the motion at the hard rock can be calculated using the generated B/C 
boundary ground motions.  
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Figure 4-2.  Seismicity of the United States. 

 
 

Figure 4-3.  Seismicity in the Central and Eastern US. 



 33 Draft: August 12, 2003 

 

0

0.2

0.4

0.6

0.8

1

1.2

5 5.5 6 6.5 7 7.5
Magnitude

FM
(m

) =
 C

D
F

 
Figure 4-4.   CDF of Bounded Gutenberg-Richter relationship (mlow=5, Mmax =7.5). 

 

Mmax=6.5 Mmax=7.5  
Figure 4-5.  Contour map of Mmax in the CEUS. 
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Figure 4-6. Three NMSZ fictitious faults used to define the characteristic earthquake in 

the Mississippi embayment 
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Figure 4-7. Flowchart for calculating UHRS. 
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Figure 4-8. Transfer functions to convert hard rock to B/C motions and vise versa. 
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5. Estimated Site Factors 

 

5.1. UHRS at Selected Sites 

The results of PSHA with non-linear site effects using DEEPSOIL analyses are 
presented in Figure 5-1 through Figure 5-9 for 2% probability of exceedance in 50 years.  
Each graph inludes: 

 
a) the USGS peak ground accelerations and spectral accelerations at 1.0 and 0.2 

seconds at B/C boundary 
 
b) NEHRP UHRS at B/C boundary 
 
c) Simulated UHRS using the probabilistic seismic hazard analysis developed in 

Section 4 at B/C boundary 
 
d) NEHRP UHRS corresponding to the site class for the studied site 
 
e) Computed surface UHRS (after propagation through embayment deposit using 

DEEPSOIL) using generic soil profile. A proposed NEHRP style UHRS is also 
shown 

 
f) Computed surface UHRS (after propagation through embayment deposit using 

DEEPSOIL) using site specific soil profile. A proposed NEHRP style UHRS is 
also shown 

 
 

In general, for all sites except Paris, the computed/proposed UHRS are lower than 
those obtained using NEHRP recommended spectra. The computed HURS also show a 
shift towards longer period compared to NEHRP spectra. 

5.2. Computed Site Factors 

Site factors are computed using the proposed NEHRP style UHRS and shown in 
Table 5-1, Figure 5-10 and Figure 5-11. For comparison corresponding NEHRP factors, 
obtained from Table 2-3 and Table 2-4, are also shown. 
 
 From analysis of 10 sites, it is determined that NEHRP or NCHRP 12-49 site 
coefficients Fa are mostly conservative and maybe reduced for sites in West Tennessee.  
However, the values of Fv are reasonable and in some cases need to be increased slightly.  
 
 Pezeshk et al. (1998) considered the whole West Tennessee and determined the 
mean and the standard deviation for the amplification factors for peak ground 
acceleration, spectral acceleration at 1 second and 0.30 second.  Table 5-2 provides the 
mean and the standard deviation of soil amplification factors obtained by Pezeshk et al. 
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(1998).  It is of interest that amplification factors obtained in Pezeshk et al. (1998) were 
based on equivalent linear analysis and are close to the results of the current AASHTO 
Specifications for soil type II. 
 

The results of this study are limited to the specific sites selected and the 
assumptions related to choices of material properties and input motions. They should not 
be generalized to other sites without conducting additional site-specific studies. 
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Figure 5-10.  Values of Fa from DEEPSOIL results and NEHRP. 
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Figure 5-11.  Values of Fv from DEEPSOIL results and NEHRP. 
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